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a b s t r a c t

This paper presents a hierarchical predictive control strategy to optimize both power utilization and
oxygen control simultaneously for a hybrid proton exchange membrane fuel cell/ultracapacitor system.
The control employs fuzzy clustering-based modeling, constrained model predictive control, and adaptive
switching among multiple models. The strategy has three major advantages. First, by employing multiple
piecewise linear models of the nonlinear system, we are able to use linear models in the model predictive
control, which significantly simplifies implementation and can handle multiple constraints. Second, the
control algorithm is able to perform global optimization for both the power allocation and oxygen control.
As a result, we can achieve the optimization from the entire system viewpoint, and a good tradeoff
ybrid vehicle

redictive control
ower management
xygen control
ltracapacitor

between transient performance of the fuel cell and the ultracapacitor can be obtained. Third, models of
the hybrid system are identified using real-world data from the hybrid fuel cell system, and models are
updated online. Therefore, the modeling mismatch is minimized and high control accuracy is achieved.
Study results demonstrate that the control strategy is able to appropriately split power between fuel cell
and ultracapacitor, avoid oxygen starvation, and so enhance the transient performance and extend the

id sys
operating life of the hybr

. Introduction

Proton exchange membrane (PEM) fuel cells are clean and highly
fficient electrochemical devices that convert hydrogen directly
nto electricity. They have been considered as alternative power
ources for vehicles, mobile robots, backup power sources, etc. In
ractical applications, PEM fuel cells are usually arranged with aux-

liary power sources, such as batteries and ultracapacitors, to form
ybrid systems.

The electric loads supplied by a hybrid fuel cell system may
requently fluctuate. Abrupt changes in power may cause oxygen
tarvation in the fuel cell, may overcharge or overdischarge the
ltracapacitor, and may reduce the working life of the system in
long term [1,2]. Therefore, sophisticated power management and
xygen control are necessary.

Many studies have been carried out on power management.

iang et al. [3] present an adaptive control strategy that adjusts the
utput current set point of the fuel cell. Ferreira et al. [4] studied
fuzzy logic supervisory-based power management strategy for a

uel cell/ultracapacitor/battery combined electric vehicle. Guezen-

∗ Corresponding author. Tel.: +86 27 8785 9049; fax: +86 27 8764 0549.
E-mail address: chenqh@whut.edu.cn (Q. Chen).

378-7753/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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tem.
© 2009 Elsevier B.V. All rights reserved.

nec et al. [5] and Rodatz et al. [6] designed an optimal control
strategy to minimize the hydrogen consumption in a hybrid fuel cell
system. Zhang et al. [7] proposed a wavelet-transform algorithm
to identify and allocate power demands with different frequency
contents to corresponding sources to achieve an optimal power
management control algorithm.

In the aspect of oxygen control, Pukrushpan et al. [8,9] developed
a mechanistic model suitable for the study of controls in fuel cell
systems. Vahidi et al. [1,10] used a theoretical model-based predic-
tive control approach to manage current and oxygen so as to avoid
oxygen starvation and surge or choking of the air compressor in
a fuel cell/ultracapacitor hybrid system. To enforce constraints on
the oxygen supply and protect the fuel cells from oxygen starvation,
Sun and Kolmanovsky [11] use a robust load governor to regulate
the current drawn from the fuel cell. These strategies have all proved
effective in avoiding oxygen starvation.

Model predictive control (MPC) works in a centralized manner
for constrained control problems through a multivariable mini-
mization [12]. A key advantage of MPC over other control schemes
is the ability to deal with constraints in a systematic and straight-

forward manner [13]. Multiple model adaptive control has been
widely utilized in improving the transient response of systems with
boundary condition changes [14].

We have noticed that power management and oxygen control
are typically investigated separately. That is to say, power distribu-

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:chenqh@whut.edu.cn
dx.doi.org/10.1016/j.jpowsour.2009.02.034


4 wer S

t
b
f
t
n
c
t
s
a
u

f
o
d
o
h
p
a
i
t
e
s
o
t
e

d
i
s
i
c

2

W
a
i
o
a
i

2

i
c
p
a
v
u
r
c
d
d

c
t
a
i
p

d

O
d

74 Q. Chen et al. / Journal of Po

ion command is determined first according to load requirement
ut without interacting with real-time fuel cell control, and then
uel cell system control (in which including oxygen supply con-
rol) is determined to respond to the power command signal while
ot to the load requirement directly. As a result, the hybrid system
ontrol is not global optimized. Our purpose in this paper, then, is
o describe a centralized multiple models-based predictive control
cheme that addresses both power distribution and oxygen control,
nd that can provide a systematic and globally optimized solution
nder multiple constraints.

The proposed control scheme is designed and implemented as
ollows. First, characteristics of the hybrid system over its whole
perating range are identified and expressed as multiple linear
iscrete-time models by employing the fuzzy clustering technol-
gy. Each model corresponds to a typical operating zone of the
ybrid system, and the models are updated online to cater for
arameter variations of the real system. Second, constrained MPCs
re designed for each model. Finally, an upper-layer adaptive switch
s designed to determine the most appropriate model and to switch
he corresponding MPC as needed. The control scheme is aimed to
nhance the performance of the system, and to protect the hybrid
ystem not only by avoiding oxygen starvation, but also by trading
ff transient demands between the fuel cell and the ultracapaci-
or, according to constraints and weighting matrices of the output
rrors.

The paper is organized as follows. In Section 2, structure and
escription of the predictive control using multiple models are

ntroduced. Section 3 describes dynamic modeling of the hybrid
ystem. Controllers are designed in Section 4. In Section 5, we
mplement and discuss experiment and simulation results. Con-
lusions are given in Section 6.

. System structure and description

We focus on control of electric power and of the oxygen supply.
e assume that the hydrogen is supplied at constant and appropri-

te pressure, humidity, and temperature, and that wave effects are
nsignificant. These assumptions should not undermine the validity
f our work because pressure, temperature and humidity dynamics
re much slower than the fuel cell power dynamics which we study
n this paper [1].

.1. System description

The hybrid fuel cell system studied in this paper, as shown
n Fig. 1, is designed for an automobile application. The electri-
al outputs of two PEM fuel cell stacks are directly connected in
arallel to the propulsion motor load. An ultracapacitor bank is
lso connected to the load through a bi-directional DC/DC con-
erter to form a hybrid PEM fuel cell/ultracapacitor system. The
ltracapacitor bank should supply peak power and should be
echarged by the fuel cell. The hybrid system can be quite effi-
ient because the fuel cell directly supplies the bulk of the load
emand while the DC/DC converter only operates to meet transient
emands.

The distribution of power between the fuel cell and the ultra-
apacitor depends on the duty ratio of the DC/DC converter, while
he oxygen supply to the PEM fuel cell is regulated by the voltage
pplied to the air compressor, Vcm. Duty ratio of a DC/DC converter
s defined as the ratio of switch on time interval, TON, to switching
eriod T, i.e.
= TON

T
. (1)

There exist two duty ratios in the bi-directional DC/DC converter.
ne duty ratio, dc, is for charging the ultracapacitor, and the other,
d, is for discharging the ultracapacitor.
ources 191 (2009) 473–482

Oxygen excess ratio is defined as

�O2 = WO2,in

WO2,rct
, (2)

where WO2,in is the flow of oxygen into the fuel cell and WO2,rct

is the mass of oxygen reacted in the fuel cell and is related to the
current drawn from the fuel cell.

The state of charge is usually defined as the ratio of energy stored
in the ultracapacitor to the rated energy capacity of the ultracapac-
itor [15], i.e.

SOC = V2
c

V2
c,max

, (3)

where Vc and Vc,max are the instantaneous voltage and maximum
voltage of the ultracapacitor, respectively. Vc,max is constant and
controlling SOC is equivalent to controlling Vc/Vc,max. As a result,
we define a new state of charge, SOC, which is easier to control [1],
i.e.

SOC = Vc

Vc,max
. (4)

2.2. Control structure and principle

The framework of the multiple model predictive control is
presented in Fig. 2. It has four major blocks, namely model pre-
dictive controllers, models, adaptive switch, and the controlled
system.

There are n linear models and corresponding MPCs in the sys-
tem. Namely, Modeli (i = 1, 2, . . ., n) is the ith linear model of the
hybrid system at a typical operating zone and MPCi is a model pre-
dictive controller designed for Modeli. Modelonline denotes the unit
that updates each model online according to real-time data so as to
cater for time variation of the system.

The adaptive switch, also called an upper-layer controller, is
a decision unit that determines the most appropriate MPC to
control the hybrid system during each control period. Briefly, its
operating principle is as follows. Firstly, control signals are fed
into the hybrid system and into each model simultaneously. Sec-
ondly, the output of each model is compared to the actual output,
respectively. Finally, according to the errors, the adaptive switch
periodically chooses the model that best matches the observed per-
formance and then switches on the corresponding MPC. At each
period, only one MPC is in service and occupies computational
resources.

The system design consists of two major steps: identification of
the hybrid system and design of the control. System identification
consists of collecting input and output data from the hybrid system
and dividing it into several sets based on fuzzy clustering. Then
models are identified from each data set. Control design entails
design of the MPCs and design of the adaptive switch. In design-
ing the MPCs, we will focus on handling multiple constraints and
enhancing computational speed. In design of the adaptive switch,
it is important to design performance evaluation function and the
switch mechanism.

3. Modeling of the hybrid system

The hybrid system is a multiple input and multiple output non-

linear system. This section establishes the bank of linear models
that describe the hybrid system. Input and output data are divided
into multiple sets through fuzzy clustering firstly and then the
model for each data set is identified. In addition, the models will
be updated online during utilization phase.
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Fig. 1. Schematic of the

.1. Fuzzy clustering

To characterize the hybrid system using piecewise linear mod-
ls, fuzzy clustering is chosen to divide the input and output data
nto multiple sets corresponding to linear areas. It contains three
teps: determine input and output variables, collect input and out-

ut data, and classify data using fuzzy clustering method. The input
nd output variables are first determined as follows.

Input variables are chosen as

(k) =
(

Vcm dd dc

)T
, (5)

Fig. 2. Framework of multiple m
d PEM fuel cell system.

Output variables are chosen as

y(k) = ( �O2 Wcp psm Vst Ist Ic SOC )
T
, (6)

where Wcp is air flow of compressor, psm is pressure of air supply
manifold, Vst is voltage of the fuel cell, Ist is current of the fuel cell,

and Ic is current of the ultracapacitor. Power demanded by the load,
Pd, is viewed as a disturbance to the system. The hybrid system can
now be characterized by these input and output variables.

zi = ( yT (i) uT (i) )T
, i = 0, 1, 2, . . . , N − 1, (7)

odel predictive control.
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here N denotes the total number of sampled data. u(i) ∈ R3,
(i) ∈ R7, and z(i) ∈ R10.

After the input and output data of the system are collected,
fuzzy clustering approach with a fuzzy covariance matrix [16]

s applied to classify the data into n sets. The kernel issue of the
ethod is to minimize the cost function

f =
N−1∑
i=0

n∑
j=1

ω˛
ij dij(�j) +

N−1∑
i=0

�i

⎛
⎝ n∑

j=1

ωij − 1

⎞
⎠+

n∑
j=1

ˇj(|Mj| − �j),

(8)

here ωij is a membership function of sample zi to the jth class, ˛
s a smoothing parameter, dij(�j) denotes the distance from point zi
o the center vj of the jth class and

ij(�
(k)
j

) = (zi − vj)
T Mj(zi − vj), (9)

j ∈ R10×10 is a symmetric and positive definite weighting matrix,
j = (vj, Mj), the superscript k represents the step number of the
terative computing cycle, �i and ˇi are Lagrange multipliers, �j is
constraint of |Mj|.

Given data {zi} and an initial guess �(0)
j

, the classification is pro-
eeded as the following iterative algorithm.

For k = 1, 2, . . ., use the computing results of the (k − 1)th cycle
o compute the variables of the kth cycle:

(i) Compute the distance from point zi to the jth class according
to Eq. (9).

(ii) Compute ω(k)
ij

ω(k)
ij

=
(

n∑
l=1

(
dij

dil

)1/(˛−1)
)−1

. (10)

If dih = 0 for some h, set ωih = 1, ωil = 0 ∀l /= h
iii) Compute new estimates v(k)

j
, M(k)

j

v(k)
j

=
∑N−1

i=0 ω˛
ij

zi∑N−1
i=0 ω˛

ij

, (11)

M(k)
j

=
{(

1
�j|Pj|

)1/n
∑N−1

i=0 ω˛
ij

(zi − vj)(zi − vj)
T∑N−1

i=0 ω˛
ij

}−1

. (12)

Let k = k + 1 and recycle to (i) until a specified convergence
criterion, �, is satisfied.

Then ∀i ∈ {0, 1, . . ., N − 1}, zi can be classified to jth class, namely

i ∈
{

�j|j = argmax
l

(ωil)
}

, (13)

here � j denotes jth class sample set.
A flow chart of the algorithm is shown in Fig. 3.

.2. Identification

The order of the system is determined through the theoreti-
al model. For each data set, we use the following linear model
o describe the relationship between the input and output:

i(k) = �T
i Xi(k) ∀i ∈ {1, 2, . . . , n}, (14)

(na+nb+1)×7
here subscript i denotes the ith model, �i ∈ R is a sys-
em parameter matrix and

i(k) = (yT
i (k − 1), . . . , yT

i (k − na), uT (k), . . . , uT (k − nb))
T
.

(15)
Fig. 3. Flow chart of fuzzy clustering algorithm.

�i is unknown and is estimated by the recursive least squares
algorithm as

�̂i(k) = �̂i(k − 1) + aiXi(k)eT
i
(k)

1 + XT
i

(k)Xi(k)
, (16)

ai =
{

1 if
∥∥ei(k)

∥∥> M

0 otherwise
, (17)

where �̂i denotes estimation of �i, M represents the maximum
error that can be accepted, and ei(k) is the output error between
the ith model and the practical system, i.e.

ˆ T
ei(k) = y(k) − �i Xi(k). (18)

The identification results are then expressed as discrete state
space equation, i.e.

x(k + 1) = Aix(k) + Biu(k) + BdiPd(k), (19)
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(k) = CT
i x(k) + Diu(k), (20)

here x ∈ R7na and Pd denote state variables and power demand,
espectively. Ai ∈ R7na×7na , Bi ∈ R7na×3, Bdl ∈ R7na , Ci ∈ R7na×7,

i ∈ R7×3 are parameter matrices determined by �̂i.

. Controller design

.1. Model predictive controller design

Fundamentally, a MPC should predict the output trajectory of
process and compute a series of control actions, subject to con-

traints, that will minimize the difference between the predicted
rajectory and some desired trajectory. A key advantage of the MPC
ver other control schemes is its ability to deal with constraints in
systematic and straightforward manner.

Generally, the MPC control process consists of future states or
utput prediction, scrolling optimization, and control signal imple-
entation. Now we use the identified models to design MPC. An

mportant step is to set an objective function, which is defined as

min
(k),...,u(k+Nu−1)

J =
Nu∑
j=1

(
(ŷ(k + j) − yr(k + j))T Q (ŷ(k + j) − yr(k + j))

+ uT (k + j)RuT (k + j)
)

, (21)

here Nu is predictive horizon, ŷ(k + j) is the estimated out-
ut of the system at instant k + j through models based on

nformation available at instant k. yr(k + j) is the desired output
t instant k + j, and Q ∈ R7×7, R ∈ R3×3 are weighting matri-
es on output errors and control, respectively. We choose the
ontrol horizon to be equal to the prediction horizon, and
efine Q = diag

(
Q�O2

QWcp Qpsm QVst QIst QIc QSOC
)

and

= diag
(

RVcm Rdd
Rdc

)
, where Q�O2

, QWcp , Qpsm , QVst , QIst , QIc ,

nd QSOC are penalties on errors in �O2 , Wcp, psm, Vst, Ist, Ic, and
OC, respectively. RVcm , Rdd

, and Rdc are penalties on Vcm, dd and
d, respectively. We set QWcp = 0, Qpsm = 0, QVst = 0, QIst = 0 and
Ic = 0 so that the corresponding outputs are not penalized in the
erformance index and are only used for checking the constraints.

emark. The penalty on error in SOC, QSOC, is set to zero when
ower demand changes rapidly. In the case of increasing of power
emand, it is acceptable that the value of SOC is less than its
xpected value so that the ultracapacitor can supply more for power
eaks. However, if QSOC /= 0, according to the objective function,
OC will converge to its desired value and then the ultracapaci-
or will supply less. Similarly, in the case of decreasing of power
emand, if QSOC /= 0, less energy will be charged into the ultraca-
acitor. When power demand is stable, QSOC is set to a non-zero
alue so as to adjust the value of SOC to its desired value. SOC is
lways also constrained by its lower and upper limits.

Substituting state Eqs. (19) and (20) in (21), the equation is
bbreviated as

in
U

J = 1
2 UT ˝U + (yT (k)L + G)U, (22)

here ˝ ∈ R3Nu×3Nu , L ∈ R7×3Nu , G ∈ R1×3Nu are constant matrices
alculated through the system model and weighting matrices Q, R.

= (uT (k), uT (k + 1), . . . , uT (k + Nu − 1))
T
. (23)
.1.1. Constraints
One of the most important advantages of MPC is its ability to

eal with constraints. In the hybrid fuel cell/ultracapacitor system,
everal constraints must be observed.
urces 191 (2009) 473–482 477

Rapid variation on current will harm the fuel cell, so it is desir-
able to constrain the rate of change of fuel cell current, i.e.

−	Imax ≤ Ist(k + 1) − Ist(k) ≤ 	Imax, (24)

where 	Imax is the upper limit of the rate of change, which is deter-
mined by characteristics of the fuel cell.

The ultracapacitor must not be overcharged or overdischarged.
The state of charge of the ultracapacitor is an important perfor-
mance index of the hybrid system, and it should be limited to some
desired range

SOCmin ≤ SOC ≤ SOCmax, (25)

where SOCmin and SOCmax are the lower and upper limits of SOC,
respectively. In this paper the SOC is limited between 0.45 and 0.95,
and the desired value is 0.70.

Similarly, the ultracapacitor current should not exceed its limi-
tations as

−Ic,max ≤ Ic ≤ Ic,max, (26)

where Ic,max is the upper limit of Ic.
Starving the fuel cell of oxygen causes serious life-limiting prob-

lems, while supplying it with too much oxygen decreases system
efficiency. As a result, the oxygen excess ratio should be limited as

�min ≤ �O2 ≤ �max, (27)

where �min and �max are the lower and upper limits of oxygen excess
ratio, respectively. The value of �O2 depends on oxygen concentra-
tion in the cathode and current drawn from the fuel cell. Generally,
the best value of oxygen excess ratio is 2. In this paper the range of
�O2 is constrained between 1.9 and 2.1.

The voltage of the fuel cell, also the bus voltage, is constrained
as

Vst,min ≤ Vst ≤ Vst,max, (28)

where Vst,min and Vst,max are the lower and upper limits of Vst, respec-
tively.

The duty ratio of the DC/DC converter must, by definition, satisfy
the following inequalities:

0 ≤ dd ≤ 1. (29)

0 ≤ dc ≤ 1. (30)

The voltage applied to the compressor motor, Vcm, cannot be
larger than the rated voltage

0 ≤ Vcm ≤ Vcm,R (31)

Deduced from Eqs. (19)–(21) and inequalities (24)–(31), the
control optimization is transformed to the following constrained
quadratic programming problem

min
U

J = 1
2 UT ˝U + (yT (k)L + G)U

subject to Umin ≤ EU ≤ Umax

(32)

where Umin, Umax ∈ R8, and E ∈ R8×3Nu are constant matrices
obtained from Eqs. (19) and (20) and inequalities (24)–(31).

4.1.2. Optimization
The constrained quadratic programming problem is then trans-

ferred to the following simple optimization problem [17]

KŪ + q = F(KŪ + q − Ū), (33)
where Ū ∈ R8 is a variable to be optimized and
q = −E
−1(yT(k)L + G)T, K = E
−1ET, F is a piecewise function
of

F(Ū) = (F(Ū1)· · ·F(Ū8)), (34)
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Table 1
Parameters used in the experiment and simulation.

Sym. Meaning Value

Tst Temperature of fuel cell 338 K
Tatm Atmospheric temperature 288 K
PH2 Partial pressure of hydrogen 1.5 atm
n Number of cells in each stack 260
78 Q. Chen et al. / Journal of Po

nd for i = 1, . . ., 8

(Ūi) =

⎧⎪⎨
⎪⎩

Ūi,min, Ūi < Ūi,min

Ūi, Ūi,min ≤ Ūi ≤ Ūi,max

Ūi,max, Ūi,max < Ūi

(35)

here Ūi,min and Ūi,max are the minimum and maximum values of
¯ i, respectively.

If Ū∗ is a solution of Eq. (33), then the optimal solution of the
uadratic programming problem (32) is

∗ = �Ū∗ + ϑ, (36)

here � = ˝−1ET , ϑ = −˝−1(yT (k)L + G)
T
.

Ū can be optimized through the structure shown in Fig. 4.
MPCs are designed for each linear model, but only one will oper-

te online during each period. This optimization method can also
e implemented through neural network and it has a faster conver-
ence rate than related optimization methods.

.2. Adaptive switch design

We describe next the adaptive switch that defines which MPC
perates online during each control period. We define a perfor-
ance criterion function of the ith model as

s,i = e2
i (k) + �

k∑
j=k−l+1

e−�(k−j)e2
i (j), i = 1, . . . , n, (37)

here  , �, � are constants and l is an integer. ei(k) denotes the
rror between output of the ith model and output of the practical
ystem, i.e.

i(k) = ŷi(k) − y(k). (38)

The adaptive switch controller periodically compares the per-
ormance criterion function and switches on the MPC designed for
he jth model.

= arg
i

n
min
i=1

Js,i. (39)

The design procedure and operating principle of the proposed
odeling and control method can be summarized as the following:

(I) Classify the real-world data according to the flow chart in
Fig. 3.

(II) Identify parameters �̂i using Eq. (16) and establish state space
models (19) and (20).

(III) Choose a model based on (39).
(IV) Optimize Ū according to Fig. 4.

(V) Compute control variable U* using (36).

(VI) Control the system.
VII) If there is no power demand, classify the new collected data

and update models of the system, else go to (III) and start next
control period.

Fig. 4. Diagram for optimization. F(·) is the piecew
A Active area of fuel cell 140 cm2

C Capacitance of ultracapacitor 86 F
Vc,max Maximum voltage of ultracapacitor 168 V

5. Experiment and simulation

The hybrid system, as shown in Fig. 1, is designed to power a car.
The rated power is 50 kW. The DC bus voltage is controlled between
170 V and 250 V. The PEM fuel cell is composed of two PEM fuel cell
stacks, which are connected in parallel. Each stack has 260 cells and
an active area of 140 cm2.

The ultracapacitor is 86 F and the maximum voltage is 168 V.
The value of capacitance can be realized by a bank of 56 stan-
dard ultracapacitors, each with capacitance of 4800 F and a rated
voltage of 3 V, connected in series. The maximum stored energy
is 304 Wh (1/2 × 86 × 1682/3600 × 0.952), although only 97 Wh
(1/2 × 86 × 1682/3600 × (0.702–0.452)) is available between the
target nominal SOC and the lower limit. This 97 Wh corresponds
to an average power at 35 kW for 10 s and that is sufficient to buffer
the fuel cell from acceleration transients.

The experiments and simulations described in this section relied
on Matlab/Simulink and were developed in two steps. First, models
of the hybrid system were developed from real-world data from
the system. Second, multiple models-based MPCs were designed
to control the hybrid fuel cell system and comparisons between
constrained and unconstrained MPCs were made.

5.1. Modeling experiment and simulation

Real-world input and output data of a 50-kW PEM fuel cell was
collected. Assuming hydrogen pressure, humidity, and temperature
of the stacks are constant. Related parameters used are shown in
Table 1.

The sampled data are equally divided into two groups. One group
is used for modeling and the other is used for validating. In mod-
eling phase, we first classify the real-world data into 5 sets using
fuzzy clustering, and then we identify 5 models according to each
data set based on Eqs. (16)–(18). In each control period, the most
suitable model is chosen from the 5 models through Eq. (39) to
calculate the output of the system. Simulation result of PEM fuel
cell modeling is shown in Fig. 5. It is shown that there always
exists a model that adequately represents the practical system and

the multiple models closely match the practical fuel cell. Multiple
linear models of other components of the hybrid system, such as
DC/DC converter and ultracapacitor are established based on their
mechanistic models.

ise function (34), a > 0 is a scaling constant.
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ig. 5. Simulation of using the multiple models. 5 models are used in the modeling

.2. Control simulation

Control performances of constrained and unconstrained MPCs
re studied and compared to validate the proposed constrained
PC. The design of unconstrained and constrained MPCs is similar

nd is described as the follows.
Based on multiple models established previously, MPCs for each

odel and the adaptive switch are designed and implemented in
atlab/Simulink. The output weighting matrix Q is empirically set

s Q = diag(100, 0, 0, 0, 0, 0, 10), where 100 is the penalty for �O2
nd 10 is the penalty for SOC. It is noted here that the penalty for
O2 is much higher than that of SOC. This is because, in the hybrid
ystem, oxygen excess ratio is the most important index and should
e controlled with high priority. The penalty for SOC is set to zero

n case of rapid change of power demand.
The input weighting matrix, R, which includes penalties for

ir compressor voltage and duty ratio of the DC/DC converter,

s set as R = diag(0.001, 100, 100). Since the compressor voltage
s usually over 100 V and duty ratio is no more than 1, the two
enalties for duty ratios (100) are much larger than that of com-
ressor voltage (0.001). In addition, control horizon is set to 10

able 2
onstraints for the constrained MPC.

ym. Meaning Lower limit Upper limit

Imax Rate of change of fuel cell current −20 A s−1 20 A s−1

OC State of charge of the ultracapacitor 0.45 0.95
c Current of the ultracapacitor −250 A 250 A
O2 Oxygen excess ratio 1.9 2.1
st Voltage of the fuel cell 170 V 250 V
cm Voltage of the air compressor 0 200 V
oltage curves of the PEM fuel cell and (b) sampled current of the PEM fuel cell.

sampling steps. The constraints of the constrained MPC are listed
in Table 2.

A typical urban driving cycle in China is used in simulation and
the power profile, as shown in Fig. 6, is considered as the power
demand.

The simulation results for both the unconstrained and the con-
strained MPC are shown in Fig. 7.

It is noticed that, in Fig. 7(a), there exist significant perturbations
in oxygen excess ratio that fluctuates between 1.58 and 2.28 for
unconstrained MPC. As a result, oxygen starvation is unavoidable in
this situation. While in the case of the constrained MPC, the oxygen
excess ratio is relatively stable and only varies between 1.92 and
2.07, which is a much narrower range than for the unconstrained
MPC. This is because of the constraints on oxygen excess ratio and
the rate of change of fuel cell current.

As shown in Fig. 7(b) and (c), current and voltage are much
smoother when using the constrained MPC than when using the
unconstrained MPC. The maximum rate of change of the fuel cell
is 20 A s−1, which is the upper limit of the rate. The voltage curve
is inside the limited area and stable. These phenomena prove that
the constraint on voltage and current change rate is valid. If capaci-
tance of the ultracapacitor increases, the upper limit of the current
change rate can be set lower. As a result, there is a tradeoff between
upper limit of the change rate of fuel cell current and capacitance
of the ultracapacitor.

In Fig. 7 (d), the variation of SOC of the ultracapacitor is much
larger when using the constrained MPC than when using the uncon-

strained MPC. This is because, under the constrained MPC, much
more energy is squeezed out from the ultracapacitor to supply the
peak load demands, and so smooth perturbations of fuel cell cur-
rent. The SOC satisfies the constraints on lower and upper limits.
Therefore, the constraints on SOC are effective. In case of rapid
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hange of power demand, penalty on SOC in weighting matrix Q
s set to zero. In this situation SOC is only constrained by its lower
nd upper limits, and the ultracapacitor discharges more or charges

ore energy to smooth the fuel cell transient. As a result, a good

radeoff between the transient of the fuel cell and ultracapacitor
an be achieved, according to constraints and weighting matrices
f the output errors.

ig. 7. Simulation results of constrained (red line) and unconstrained (blue line) MPC. Th
xygen excess ratio; (b) current of the fuel cell; (c) voltage of the fuel cell and (d) SOC of th

he reader is referred to the web version of the article.)
ed by the driving cycle.

The power distribution under the constrained MPC is shown
in Fig. 8. It is seen that the fuel cell power is smooth while the
frequent high power demands are distributed to the ultracapac-

itor. The change rate of the fuel cell current and power are low.
Moreover, main variables (e.g., �O2 , SOC, Ic) meet their constraints.
Consequently, the hybrid system is well protected, which is helpful
to extend the lifetime of the system.

e weighting matrices are Q = diag(100, 0, 0, 0, 0, 0, 10), R = diag(0.001, 100, 100). (a)
e ultracapacitor. (For interpretation of the references to colour in this figure legend,
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Fig. 8. Power distribu

. Conclusion

A centralized multiple models-based constrained MPC for a
ybrid fuel cell/ultracapacitor system was proposed and veri-
ed. The proposed approach, different from other approaches
escribed in the literature, can provide a globally optimized solu-
ion for power distribution and oxygen control, and can protect
he hybrid system from oxygen starvation by trading off tran-
ient current demand from the PEM fuel cell to the ultracapacitor.
t achieves this by setting constraints and by weighting output
rrors.
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